ZnO nanorods for efficient third harmonic UV generation

نویسندگان

  • Susanta Kumar Das
  • Frank Güell
  • Ciarán Gray
  • Prasanta Kumar Das
  • Ruediger Grunwald
  • Enda McGlynn
چکیده

ZnO nanorods grown by both high temperature vapour phase transport and low temperature chemical bath deposition are very promising sources for UV third harmonic generation. Material grown by both methods show comparable efficiencies, in both cases an order of magnitude higher than surface third harmonic generation at the quartz-air interface of a bare quartz substrate. This result is in stark contrast to the linear optical properties of ZnO nanorods grown by these two methods, which show vastly different PL efficiencies. The third harmonic generated signal is analysed using intensity dependent measurements and interferometric frequency resolved optical gating, allowing extraction of the laser pulse parameters. The comparable levels of efficiency of ZnO grown by these very different methods as sources for third harmonic UV generation provides a broad suite of possible growth methods to suit various substrates, coverage and scalability requirements. Potential application areas range from interferometric frequency resolved optical gating characterization of few cycle fs pulses to single cell UV irradiation for biophysical studies. ©2014 Optical Society of America OCIS codes: (160.4236) Nanomaterials; (190.4400) Nonlinear optics, materials; (190.7110) Ultrafast nonlinear optics. References and links 1. A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006). 2. D. Byrne, E. McGlynn, J. Cullen, and M. O. Henry, “A catalyst-free and facile route to periodically ordered and c-axis aligned ZnO nanorod arrays on diverse substrates,” Nanoscale 3(4), 1675–1682 (2011). 3. E. McGlynn, M. O. Henry, and J.-P. Mosnier, “ZnO wide bandgap semiconductor nanostructures: growth, characterisation and applications,” in Handbook of Nanoscience and Technology vol. II, A.V. Narlikar and Y.Y.Fu, eds. (Oxford University Press, 2009). 4. G. I. Petrov, V. Shcheslavskiy, V. V. Yakovlev, I. Ozerov, E. Chelnokov, and W. Marine, “Efficient thirdharmonic generation in a thin nanocrystalline film of ZnO,” Appl. Phys. Lett. 83(19), 3993–3995 (2003). 5. K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire,” Nano Lett. 12(2), 833–838 (2012). 6. S. K. Das, M. Bock, C. O'Neil, R. Grunwald, K. Lee, H. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008). 7. K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8 c), 2671–2674 (2008). 8. Y. Kobayashi, D. Yoshitomi, K. Iwata, H. Takada, and K. Torizuka, “Ultrashort pulse characterization by ultrathin ZnO, GaN, and AlN crystals,” Opt. Express 15(15), 9748–9754 (2007). 9. S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19(18), 16985–16995 (2011). 10. C. Zhang, F. Zhang, S. Qian, N. Kumar, J. Hahm, and J. Xu, “Multi-photon absorption induced amplified spontaneous emission from biocatalyst synthesized ZnO nanorods,” Appl. Phys. Lett. 92(23), 233116 (2008). 11. D. Sridhar, X. Jining, J. K. Abraham, and V. K. Varadan, “Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe,” Proc. SPIE 6528, 65281L (2007). #204864 $15.00 USD Received 22 Jan 2014; revised 3 Mar 2014; accepted 9 Mar 2014; published 13 Mar 2014 (C) 2014 OSA 1 April 2014 | Vol. 4, No. 4 | DOI:10.1364/OME.4.000701 | OPTICAL MATERIALS EXPRESS 701 12. C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, “Metal oxide nanocrystals for gas sensing,” Sens. Actuators B Chem. 109(1), 2–6 (2005). 13. J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, and B. Chen, "The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro," Nanoscale Res. Lett. 5(6), 1063–1071 (2010). 14. S. M. Al-Hilli, M. Willander, A. Öst, and P. Strålfors, “ZnO nanorods as an intracellular sensor for pH measurements,” J. Appl. Phys. 102(8), 084304 (2007). 15. D. Byrne, E. McGlynn, M. Biswas, M. O. Henry, K. Kumar, and G. Hughes, “A Study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays,” Cryst. Growth Des. 10(5), 2400–2408 (2010). 16. D. Byrne, E. McGlynn, M. O. Henry, K. Kumar, and G. Hughes, “A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays,” Thin Solid Films 518(16), 4489–4492 (2010). 17. F. Güell, J. O. Osso, A. R. Goni, A. Cornet, and J. R. Morante, “Synthesis and optical spectroscopy of ZnO nanowires,” Superlattices Microstruct. 45(4-5), 271–276 (2009). 18. F. Güell, J. O. Ossó, A. R. Goñi, A. Cornet, and J. R. Morante, “Direct imaging of the visible emission bands from individual ZnO nanowires by near-field optical spectroscopy,” Nanotechnology 20(31), 315701 (2009). 19. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995). 20. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, and W. Seeber, “Second harmonic performance of a-axis oriented ZnO nanolayers on sapphire substrates,” Appl. Phys. Lett. 87(17), 171108 (2005). 21. G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617– 2626 (2005). 22. G. Stibenz and G. Steinmeyer, “Structures of interferometric frequency-resolved optical gating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 286–296 (2006). 23. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010). 24. http://www.rp-photonics.com/chromatic_dispersion.html.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Laser Annealing on Optical Properties of Ion-Implanted ZnO Nanorods

We report on the demonstration of the effectiveness of nanosecond laser annealing on optical properties of phosphorus ion (P)-implanted ZnO nanorods (NRs). Vertically-alligned ZnO NRs have been synthesized by nanoparticle-assisted pulsed laser deposition (NAPLD) on c-plane sapphire substrates. The pre-laser annealing was performed with the third harmonic (355 nm) of a Qwitched Nd:YAG laser at a...

متن کامل

Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics

This paper reports the synthesis and UV sensing characteristics of a cellulose and ZnO hybrid nanocomposite (CEZOHN) prepared by exploiting the synergetic effects of ZnO functionality and the renewability of cellulose. Vertically aligned ZnO nanorods were grown well on a flexible cellulose film by direct ZnO seeding and hydrothermal growing processes. The ZnO nanorods have the wurtzite structur...

متن کامل

Structural and Morphology of ZnO Nanorods Synthesized Using ZnO Seeded Growth Hydrothermal Method and Its Properties as UV Sensing

In this study, zinc oxide (ZnO) nanorod arrays were synthesized using a simple hydrothermal reaction on ZnO seeds/n-silicon substrate. Several parameters were studied, including the heat-treatment temperature to produce ZnO seeds, zinc nitrate concentration, pH of hydrothermal reaction solution, and hydrothermal reaction time. The optimum heat-treatment temperature to produce uniform nanosized ...

متن کامل

Growth of ZnO Nanorods on Stainless Steel Wire Using Chemical Vapour Deposition and Their Photocatalytic Activity

The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition...

متن کامل

Fast UV detection by Cu-doped ZnO nanorod arrays chemically deposited on PET substrate

Well-aligned Cu-doped ZnO nanorods were successfully synthesized on polyethylene terephthalate (PET) substrate using chemical bath deposition method. The structural and optical properties of Cu-doped ZnO nanorods were investigated using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014